促进数据挖掘技术在高职学生英语A级成绩预测中的应用探析——以三亚航空旅游职业学院为例  

On the Data Mining Technology Applied in Predicting A-level English Achievement of Higher Vocational College Students——Taking Sanya Vocational College of Aeronautical Tourism as an Example

在线阅读下载全文

作  者:吴晗[1] 韩海云[1] Han Wu;Haiyun Han(Sanya Vocational College of Aeronautical Tourism,Sanya,Hainan,57200)

机构地区:[1]三亚航空旅游职业学院,海南三亚572000

出  处:《文科爱好者(教育教学版)》2019年第5期31-32,共2页

基  金:2017年度海南省教育科学“十三五”规划课题“基于数据挖掘的A级成绩预测与应用”(项目编号:QJY201710106)最终成果.

摘  要:近年来,随着科技的进步,高校进一步加快了信息化建设进程,教育数据挖掘也逐渐被提出和应用于高校的教育教学管理中。高职大学英语A级考试对专科学生来说有着极其重要的意义,是检验他们英语学习效果,进入职场的一个必备条件。利用数据挖掘技术对高职学生英语A级考试成绩进行预测分析可以找出影响学生英语学习成绩的各个相关因素,为今后的大学英语教学改革提供依据。但目前在数据挖掘技术这一方面的研究还十分欠缺,如何找到制约数据挖掘技术在高职学生英语A级成绩预测中应用的因素,并为其今后的发展提出建议,是本文的亟待解决的问题。In recent years,with the progress of science and technology,colleges and universities have further accelerated the process of information construction.Educational data mining has gradually been put forward and applied to the management of education and teaching in colleges and universities.College English A-level examination in higher vocational colleges is of great significance to college students.It is a test of their English learning effect and a prerequisite for entering the workplace.Using data mining technology to predict and analyze the performance of English A-level examination of Higher Vocational students,we can find the relevant factors that affect students’English learning performance,and provide the basis for the future reform of College English teaching.However,there is still a lack of research on data mining technology at present.This paper deals with how to find the factors that restrict the application of data mining technology in the prediction of English A-level achievement of higher vocational students and suggestions for its future development.

关 键 词:数据挖掘 英语A级成绩 现状 发展建议 

分 类 号:H319.3[语言文字—英语] G434[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象