基于改进YOLO算法的船舰目标检测DT-YOLO方法研究  

Research on DT-YOLO Method of Ship Target Detection based on Improved YOLO Algorithm

在线阅读下载全文

作  者:岳希[1,2] 梁云浩 何磊 YUE Xi;LIANG Yunhao;HE Lei(College of Software Engineering,Chengdu University of Information Technology,Chengdu 610225,China;Sichuan Province Engineering Technology Research Center of Support Software of Informatization Application,Chengdu 610225,China)

机构地区:[1]成都信息工程大学软件工程学院,四川成都610225 [2]四川省信息化应用支撑软件工程技术研究中心,四川成都610225

出  处:《成都信息工程大学学报》2022年第5期533-537,共5页Journal of Chengdu University of Information Technology

基  金:四川省科技计划重点研发资助项目(2020YFQ0056)

摘  要:针对舰载无人直升机自主着舰场景理解进场阶段舰船检测问题,提出基于YOLO改进的DT-YOLO舰船目标检测算法。将YOLO的特征提取网络中的残差结构改造为DenseNet中的密集链接结构,并将特征金字塔设计为5层,使得特征图更小,能够进一步提高检测精度。对NMS算法使用线性对数衰减的方式进行增强,有效解决舰船相互遮挡时的漏检情况。最后,建立舰船数据集对算法进行测试和分析。算法平均精准度AP达到94.21%,检测速度到达61.48帧/秒,结果表明算法对舰载无人直升机进场阶段时的舰船检测具有良好的鲁棒性,有效提升了目标较大及相互遮挡时的检测能力。Aiming at the problem of ship detection in the approach stage of understanding the autonomous landing scene of shipborne unmanned helicopters,an improved DT-YOLO ship target detection algorithm based on YOLO is proposed in this paper.Firstly,based on the YOLO algorithm,densely connected modules and transition modules are used to construct a feature extraction network,and five feature pyramids of convolutional layers of different scales are designed to alleviate the problem of inaccurate detection caused by large scale of feature maps.And the NMS algorithm is improved by the linear decay confidence score method,which effectively solves the missed detection when the ships are occluded from each other.Finally,a ship dataset is established and combined with multi-scale training and data augmentation strategies to test and analyze the algorithm.The average accuracy AP of the algorithm reaches 94.21%,and the detection speed reaches 61.48 frames per second.The results show that the algorithm has good robustness for ship detection during the approach phase of the ship-based unmanned helicopter,and effectively improves the detection ability when the target is large and occluded from each other.

关 键 词:YOLO 舰船 目标检测 自主着舰 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] U675.79[自动化与计算机技术—计算机科学与技术] E91[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象