检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳航空航天大学安全工程学院,辽宁沈阳110136
出 处:《中文科技期刊数据库(全文版)自然科学》2024年第6期0107-0112,共6页
摘 要:在国家明确强调“海洋强国”战略部署的时代背景下,适配区分类预测技术是解决水下导航与定位问题的核心技术。因此,研发基于重力异常数据的水下导航适配区分类预测模型,对于提高导航可靠性与精准度具有关键性的技术意义。本文针对不同区域的重力异常特征分布不同,首先提出一种基于C-Means聚类算法的区域适配性标定方法,通过将海域划分为五类,对各区域进行适配性标定。然后,在此基础上,本文提出一种基于BP神经网络的适配区分类预测方法,对区域适配度进行预测。实验结果表明,本文提出的预测模型在训练集中的预测精度达到99%,而在测试集中模型的预测精度达到97%。由此可见本文提出的预测模型具有较好的迁移性能,能够帮助水下航行器进行精准定位。
关 键 词:三次样条插值法 C-MEANS 聚类算法 BP 神经网络模型 分类预测
分 类 号:TP3-05[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.187.29