检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《测绘通报》2009年第11期31-33,36,共4页Bulletin of Surveying and Mapping
摘 要:LiDAR技术可以快速获取高精度的地形表面三维点云数据。利用LiDAR点云进行建筑物自动提取时,有些建筑物与树木连在一起,有些区域还有大片树林,在此情况下,很难将二者区分开来。在没有其他辅助数据时,LiDAR点云中点的高程及其变化所表现出来的高程纹理特征是区分建筑物与树木的惟一可用特征。基于灰度级共生矩阵(gray level co-occurrence matrix,GLCM)的纹理特征是对物体表面纹理很好的描述,对上述纹理特征进行分类,可以区分建筑物与树木。介绍基于GLCM纹理特征的Li-DAR点云建筑物自动提取方法。实验结果证明,在没有辅助数据的情况下,该方法也能够自动提取出建筑物。
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30