检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山西大学计算智能与中文信息处理教育部重点实验室,山西太原030006 [2]山西大学计算机与信息技术学院,山西太原030006
出 处:《山西大学学报(自然科学版)》2012年第2期211-218,共8页Journal of Shanxi University(Natural Science Edition)
基 金:国家自然科学基金(71031006);国家973计划前期研究专项课题(2011CB311805)
摘 要:特征选择是机器学习领域中的重要研究问题.作为一种重要的特征选择方法,属性约简正在受到越来越多的关注,在许多应用领域已经得到了广泛应用.文章对基于Rough Sets理论的特征选择算法作了系统的回顾和分析,具体包括启发式属性约简、基于区分矩阵的属性约简和扩展粗糙集模型的属性约简三个方面.此外,论文还给出了粗糙特征选择算法的几种常见应用,并对该领域的进一步发展进行了展望.Feature selection is an important issue in the field of machine learning.As a significant feature selection algorithm,attribute reduction has attracted much attention and been applied in many areas.This paper systematically reviews and analyzes the feature selection algorithms based on rough set theory,which are introduced from three aspects:heuristic attribute reduction,attribute reduction based on discernibility matrix and reduction for generalized rough set models.In addition,the paper concludes some common applications of rough feature selection algorithms,and gives a prospect for the further development.
关 键 词:特征选择 粗糙集 属性约简 区分矩阵 启发式搜索
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.244.172