基于神经网络的公路边坡稳定性实时判断  

Real-time Stability Analysis of Roadside Bank Based on Modular Neural Network

在线阅读下载全文

作  者:王树威[1] 陈艳艳[1] 陈宁[1] 赖见辉[1] 吴克寒 

机构地区:[1]北京工业大学交通工程重点实验室,北京100124

出  处:《交通信息与安全》2013年第2期104-108,共5页Journal of Transport Information and Safety

基  金:交通运输部科技项目(批准号:2012364223300)资助

摘  要:为了实现对非粘性土公路边坡的稳定性实时预警,采用神经网络方法建立了公路边坡稳定性安全系数Fs和变形值的关系模型,该方法克服了Fs不能实时获取的弊端,由实时测量的变形值计算出Fs,并通过Fs实现无粘性土公路边坡稳定性的实时预警,避免了传统实时预警方法中需要根据经验设定各种变形值阈值的问题。对某无粘性土公路边坡的实验研究表明,神经网络模型计算精度优于其他经验模型,且能够满足工程实时监测的需要。In order to provide early warning to roadside bank stability problem,This paper builds a mathematical model between safety factors of roadside bank stability Fs and deformation value based on artificial neural network(ANN).It can work out Fs with real-time deformation value to roadside bank,thus overcoming the weakness that Fs can't be obtained in time.Using this method,real-time warning of cohesionless(non-clay) soil-based roadside bank stability problem can be provided by using Fs.In comparison,for the same purpose the traditional real-time warning methods in roadside bank stability have to set the threshold value of all deformation value.Results from a sample test on a roadside bank with cohesionless soil demonstrate that this model is superior to others in accuracy and adaptability,and it meets the need of real-time monitoring engineering.

关 键 词:交通工程 无粘性土公路边坡 稳定性安全系数Fs 变形值 神经网络法 

分 类 号:U417[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象