检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《厦门大学学报(自然科学版)》2004年第4期429-431,共3页Journal of Xiamen University:Natural Science
基 金:国家自然科学基金(10171083)资助
摘 要:应用一个新方法,即用A 调和逼近技巧考虑了具有可控增长条件的非线性椭圆方程组弱解的部分正则性.改进了以往部分正则性的结果,直接建立了弱解的导数在正则集上的最优H lder指标,结果的证明主要是将A 调和逼近引理与第2Caccioppoli不等式巧妙结合起来.首先,证明g=u-p0(x-x0)γ(γ是某常数)满足A 调和逼近引理中g的性质,于是找到一个具有许多好性质的A 调和函数h.从而对g的梯度的L2模估计通过第2Caccioppoli不等式变为对g本身的L2估计,再应用A 调和逼近引理转化对A 调和函数h的估计,进而得到了正则性所要的标准估计式.The partial regularity for nonlinear elliptic systems with controllable growth conditions is considered. Here a new method is applied: A-harmonic approximation technique and extend previous partial regularity results, directly establishing the optimal Hlder exponent for the derivative of a weak solution on its regular set.The proof of the result is to skillfully combine A-harmonic approximation Lemma and Caccioppoli's second inequality. First, g=u-p_0(x-x_0)γis proved( where γ is some constant) which satisfiesg's property in A-harmonic approximation Lemma. And an A-harmonic functionh with many good properties is found. So through Caccioppoli's second inequality,L^2-estimate forg's gradient is transformed to estimateL^2 ofg. Furthermore, by applying A-harmonic approximation Lemma to estimate the A-harmonic functionh, the standard estimate for partial regularity is obstained.
关 键 词:A-调和逼近技巧 非线性椭圆方程组 部分正则性 最优Hǒlder指标 梯度矩阵
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7