检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《农业机械学报》2012年第S1期242-245,共4页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家高技术研究发展计划(863计划)资助项目(2012AA100906)
摘 要:针对蔬果二维投影图像含形状信息量少而影响蔬果分级精度的问题,提出一种基于深度图像的蔬果形状特征描述方法,以番茄形状特征提取为例,对该方法进行了探讨。首先利用彩色图像信息将番茄从背景中分割出;其次通过三维机器视觉测量设备获取番茄的点云数据,并对待检测番茄的点云数据深度进行归一化处理;然后通过关联被分割出的番茄区域信息与深度信息得到了番茄的深度图,并对该深度图进行极坐标采样。通过在笛卡尔直角坐标下对采样结果进行傅里叶变换,获得了基于深度图像的通用傅里叶形状描述子,该描述子不仅能有效地描述番茄在深度和横向上的形状特征,同时还具有平移、旋转和缩放的不变性。将基于深度图的通用傅里叶描述子和基于一般二维投影图像的通用傅里叶描述子先后用于番茄的分级实验中,结果表明前者平均分级精度达到92%,精度高于后者。针对蔬果二维投影图像含形状信息量少而影响蔬果分级精度的问题,提出一种基于深度图像的蔬果形状特征描述方法,以番茄形状特征提取为例,对该方法进行了探讨。首先利用彩色图像信息将番茄从背景中分割出;其次通过三维机器视觉测量设备获取番茄的点云数据,并对待检测番茄的点云数据深度进行归一化处理;然后通过关联被分割出的番茄区域信息与深度信息得到了番茄的深度图,并对该深度图进行极坐标采样。通过在笛卡尔直角坐标下对采样结果进行傅里叶变换,获得了基于深度图像的通用傅里叶形状描述子,该描述子不仅能有效地描述番茄在深度和横向上的形状特征,同时还具有平移、旋转和缩放的不变性。将基于深度图的通用傅里叶描述子和基于一般二维投影图像的通用傅里叶描述子先后用于番茄的分级实验中,结果表明前者平均分级精度达到92%,精度高于后者。
关 键 词:番茄 机器视觉 特征提取 形状 深度图 傅里叶变换
分 类 号:S22[农业科学—农业机械化工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28