检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《兰州大学学报(自然科学版)》2010年第S1期169-170,174,共3页Journal of Lanzhou University(Natural Sciences)
基 金:广西自然科学基金项目(0991265);广西教育厅科学研究项目(200707MS112);广西新世纪教改工程项目(200710961);河池学院应用数学重点学科项目(200725);<数学建模>重点课程项目(20089);河池学院重点课题项目(2009YAZ-N001)
摘 要:在微分方程理论的研究中,虽然多数微分方程无法求出精确的解析表达式,但可以通过积分不等式技巧对微分方程的解作出估计.本文研究了二元时滞积分不等式,该不等式中包含一重积分项和二重积分项,积分号外还有一个非常数函数项.利用函数的单调性、次可乘性、放大法、代换法和暂时固定某变量的方法,给出了时滞积分不等式中未知函数的估计.在微分方程理论的研究中,虽然多数微分方程无法求出精确的解析表达式,但可以通过积分不等式技巧对微分方程的解作出估计.本文研究了二元时滞积分不等式,该不等式中包含一重积分项和二重积分项,积分号外还有一个非常数函数项.利用函数的单调性、次可乘性、放大法、代换法和暂时固定某变量的方法,给出了时滞积分不等式中未知函数的估计.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28