检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林舒杨[1] 李翠华[1] 江弋[1] 林琛[1] 邹权[1]
出 处:《计算机研究与发展》2011年第S3期47-53,共7页Journal of Computer Research and Development
基 金:国家自然科学基金项目(61001013;61102136);国家"九七三"重点基础研究发展计划基金项目(2007CB311005);国防基础科研计划项目(B1420110155)
摘 要:提出了一种处理不平衡数据的降采样方法,以解决机器学习中分类器在训练时因为样本集中的样本类别不平衡而导致过拟合造成分类器性能下降的问题.利用K-Means方法,对大类样本进行聚类并提取聚类中心,获得与较小样本集样本数目近似的样本,组成新的样本集用以训练.为了避免在小类样本数目较小的情况下,单纯使用聚类降采样算法造成训练集样本的过度稀疏,使用SMOTE过采样算法结合聚类降采样,既避免了SMOTE为样本集引入较多的噪声,又有效地解决了训练集样本稀疏的问题.6组UCI测试数据和5组生物信息学实验证明了它在对类别不平衡数据进行降采样上的有效性.提出了一种处理不平衡数据的降采样方法,以解决机器学习中分类器在训练时因为样本集中的样本类别不平衡而导致过拟合造成分类器性能下降的问题.利用K-Means方法,对大类样本进行聚类并提取聚类中心,获得与较小样本集样本数目近似的样本,组成新的样本集用以训练.为了避免在小类样本数目较小的情况下,单纯使用聚类降采样算法造成训练集样本的过度稀疏,使用SMOTE过采样算法结合聚类降采样,既避免了SMOTE为样本集引入较多的噪声,又有效地解决了训练集样本稀疏的问题.6组UCI测试数据和5组生物信息学实验证明了它在对类别不平衡数据进行降采样上的有效性.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147