检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]吉林大学交通学院,长春130022
出 处:《吉林大学学报(工学版)》2011年第S1期89-94,共6页Journal of Jilin University:Engineering and Technology Edition
基 金:"863"国家高技术研究发展计划项目(2009AA11Z201);国家自然科学基金项目(50878095;50908099)
摘 要:综合运用相关性分析方法和K2算法进行了贝叶斯网络的结构学习,并应用贝叶斯参数估计方法进行了贝叶斯网络的参数学习,建立了交通事故致因分析的贝叶斯网络。应用已建网络分析了各因素对事故严重程度的影响,推理学习了改善交通控制方式在降低交通事故严重程度方面起到的作用。研究结果表明,基于贝叶斯网络建立的交通事故致因分析模型预测精度较高,而且可以应用于影响事故严重程度的因素分析,并在此基础上考察如何采取优化措施改善交通安全。综合运用相关性分析方法和K2算法进行了贝叶斯网络的结构学习,并应用贝叶斯参数估计方法进行了贝叶斯网络的参数学习,建立了交通事故致因分析的贝叶斯网络。应用已建网络分析了各因素对事故严重程度的影响,推理学习了改善交通控制方式在降低交通事故严重程度方面起到的作用。研究结果表明,基于贝叶斯网络建立的交通事故致因分析模型预测精度较高,而且可以应用于影响事故严重程度的因素分析,并在此基础上考察如何采取优化措施改善交通安全。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40