检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LI Rong & WU Xin School of Science,Nanchang University,Nanchang 330031,China
出 处:《Science China(Physics,Mechanics & Astronomy)》2010年第9期1600-1609,共10页中国科学:物理学、力学、天文学(英文版)
基 金:supported by the NationalNatural Science Foundation of China (Grant No.10873007);supported by the Science Foundation of Jiangxi Education Bureau (Grant No.GJJ09072);the Program for Innovative Research Team of Nanchang University
摘 要:With the natural splitting of a Hamiltonian system into kinetic energy and potential energy,we construct two new optimal thirdorder force-gradient symplectic algorithms in each of which the norm of fourth-order truncation errors is minimized.They are both not explicitly superior to their no-optimal counterparts in the numerical stability and the topology structure-preserving,but they are in the accuracy of energy on classical problems and in one of the energy eigenvalues for one-dimensional time-independent Schrdinger equations.In particular,they are much better than the optimal third-order non-gradient symplectic method.They also have an advantage over the fourth-order non-gradient symplectic integrator.With the natural splitting of a Hamiltonian system into kinetic energy and potential energy,we construct two new optimal thirdorder force-gradient symplectic algorithms in each of which the norm of fourth-order truncation errors is minimized.They are both not explicitly superior to their no-optimal counterparts in the numerical stability and the topology structure-preserving,but they are in the accuracy of energy on classical problems and in one of the energy eigenvalues for one-dimensional time-independent Schrdinger equations.In particular,they are much better than the optimal third-order non-gradient symplectic method.They also have an advantage over the fourth-order non-gradient symplectic integrator.
关 键 词:SYMPLECTIC INTEGRATORS SYMPLECTIC scheme-shooting METHOD celestial mechanics time-independent Schrdinger equation energy eigenvalues numerical stability BISECTION METHOD topological structure
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229