检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《东南大学学报(自然科学版)》2009年第S2期217-221,共5页Journal of Southeast University:Natural Science Edition
基 金:国家杰出青年科学基金资助项目(50625824);国家自然科学基金资助项目(50679097)
摘 要:为了精确识别结构复模态参数,提出了一种基于快速傅里叶变换(FFT)和人工神经网络的模态识别方法.该方法首先对自由振动信号进行FFT预处理,得到粗略的各阶模态频率和相位.然后,根据模态的阶数设定神经元的个数,根据预处理后得到的频率和相位设定神经网络权值和基函数参数迭代的初始值.最后,通过对人工神经网络进行训练,达到利用自由振动信号进行时域模态识别的目的.仿真结果表明,该算法可消除频率法识别中因频谱泄露与噪声等产生的误差,提高模态识别的精度,因而是一种有效的时域识别方法.To precisely identify complex modal parameters of structural systems,a model identification algorithm is presented based on the fast Fourier transform(FFT) and the artificial neural network model.First,the free vibration signal is preprocessed by the FFT algorithm.The frequency and the phase of all modals are obtained.Secondly,the number of neural nodes is determined by the orders of the modals.The initial weights of neural network and the iterative initial parameters of the base function are assigned according to the frequency and the phase obtained by preprocessing.Finally,by training artificial neural network,the time-domain modal identification can be realized by using the free vibration signal.The simulation results indicate that this algorithm can eliminate the errors induced by frequency spectrum leakage and ground noise in frequency-domain methods and the accuracy of modal identification is improved.Therefore,it is an effective time-domain identification algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43