检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾接贤[1] 张桂梅[1] 储珺[1] 鲁宇明[1]
机构地区:[1]南昌航空工业学院土木建筑系,江西南昌330034
出 处:《南昌航空大学学报(自然科学版)》2003年第4期9-13,40,共6页Journal of Nanchang Hangkong University(Natural Sciences)
基 金:国家自然科学基金 (No :60 2 75 0 3 7) ;江西省自然科学基金 (No :0 3 110 19) ;南昌航空工业学院测试技术与控制工程研究中心开放基金 (No :2 0 0 2 .0 0 7)
摘 要:将霍夫变换与最小二乘法相结合 ,研究对实验数据和图像处理中的二值边缘图进行直线拟合的方法。首先 ,用霍夫变换剔除数据点集中的干扰点或噪声 ,并将分布在不同直线附近的点分离出来 ;然后 ,用最小二乘法拟合各直线。该方法既解决了直接使用最小二乘法拟合时 ,拟合直线易受干扰点或噪声的影响和数据点分布在多条直线附近而无法拟合的两个问题 ;同时也解决了直接使用霍夫变换时 ,拟合直线精度不高和直线段有效区间不容易控制的问题。A new approach to fit line is proposed. In this method, Hough transform and least square have been combined to process experiment data and the contour of binary images. Firstly, interferential points and noise in the set of data points have been deleted by using Hough transform, meanwhile the points in the vicinity of different lines are separated; Secondly, lines have been fit by using least square. When fitting line using least square, it always encounters some problems. On the one hand, it can't overcome the interference of interferential points and noise, on the other hand, when data points distributed in the vicinity of a few lines, it is difficult to fit line based on these points. When fitting lines using Hough transform, it tends to have low precision and difficult to control line in the valid trivial. The presented method can overcome these problems. The effectiveness of the algorithm is demonstrated by the experiment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15