检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]燕山大学信息科学与工程学院,秦皇岛066004
出 处:《系统仿真学报》2001年第S2期111-112,116,共3页Journal of System Simulation
摘 要:图象边缘检测技术是图象处理中最重要的内容之一,且已在图象分析和识别区域中得到广泛的应用。但由于边缘点不连续和难以把存在大量碎边缘的高细节区提取出来这两个原因,而不能直接实现完整意义上的图象分割。为了提高图象分割的边缘准确性和区域一致性以及降低分割错误率,提出用边缘生长的方法来解决不连续的边缘点链接问题,以便间接地将高细节区围成一个区域。该算法也可以嵌入到其他利用边缘信息的分割算法中。Edge detection is one of the most important techniques in image processing; it is often used in the field of image analysis and image recognition for many applications. However edge detection alone is not a whole image segmentation process, because usually the detected edges are not continuous and many loose edge points exist in high detail areas. To improve the accuracy of boundary locations and region homogeneity as well as to reduce the error rate in image segmentation, we present a novel approach called edge growing to attack edge discontinuity after edge point detection, therefore high detail areas enclosed by the adjacent salient regions can be indirectly extracted as a large areas. The algorithms can be embedded in other complicated segmentation procedures to incorporate edge information.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.25.32