检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]数学科学学院
出 处:《上海师范大学学报(自然科学版)》1999年第1期8-15,共8页Journal of Shanghai Normal University(Natural Sciences)
摘 要:介绍了延时微分方程组的Pm L稳定性⒚用隐式RungeKutta 方法去解如下形式的含有m 个延时量的线性试验方程组:y′(t) = ay(t) + mj= 1djy t- τj , t≥0y(t) = φ(t) , t≤0其中a,bj(j = 1,2,…,m ) ∈C,τm ≥τm - 1 ≥…≥τ1 > 0⒀φ(t) 是已知函数⒚当m = 2 时,证明隐式RungeKutta 方法是P2L稳定的充要条件是它为L稳定的⒚当m > 2 时。The P mL stability of numerical solutions for delay differential equations(DDEs) is considered. Focus on the stability behaviour of Implicit Runge Kutta(IRK) methods in the solution of the following linear test equations with m delay terms:y′(t)=ay(t)+mj=1d jyt-τ j , t≥0 y(t)=φ(t) , t≤0where a,b j(j=1,2,…,m)∈C,τ m≥τ m-1 ≥…≥τ 1>0, and φ(t) is a given function. For m=2,it is shown that IRK is P 2L stable if and only if IRK is L stable. For m>2, we have the same results.
关 键 词:隐式RungKutta方法 延时微分方程 PmL稳定
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63