延时微分方程组的隐式RungeKutta方法的P_mL稳定性(英文)  被引量:1

The P mL stability of Implicit Runge Kutta Methods for Delay Differential Equations *

在线阅读下载全文

作  者:杨彪 匡蛟勋 

机构地区:[1]数学科学学院

出  处:《上海师范大学学报(自然科学版)》1999年第1期8-15,共8页Journal of Shanghai Normal University(Natural Sciences)

摘  要:介绍了延时微分方程组的Pm L稳定性⒚用隐式RungeKutta 方法去解如下形式的含有m 个延时量的线性试验方程组:y′(t) = ay(t) + mj= 1djy t- τj , t≥0y(t) = φ(t) ,         t≤0其中a,bj(j = 1,2,…,m ) ∈C,τm ≥τm - 1 ≥…≥τ1 > 0⒀φ(t) 是已知函数⒚当m = 2 时,证明隐式RungeKutta 方法是P2L稳定的充要条件是它为L稳定的⒚当m > 2 时。The P mL stability of numerical solutions for delay differential equations(DDEs) is considered. Focus on the stability behaviour of Implicit Runge Kutta(IRK) methods in the solution of the following linear test equations with m delay terms:y′(t)=ay(t)+mj=1d jyt-τ j , t≥0 y(t)=φ(t) , t≤0where a,b j(j=1,2,…,m)∈C,τ m≥τ m-1 ≥…≥τ 1>0, and φ(t) is a given function. For m=2,it is shown that IRK is P 2L stable if and only if IRK is L stable. For m>2, we have the same results.

关 键 词:隐式RungKutta方法 延时微分方程 PmL稳定 

分 类 号:O241.81[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象