采用粒子群算法的自适应变步长随机共振研究  被引量:22

Self-adaptive step-changed stochastic resonance using particle swarm optimization

在线阅读下载全文

作  者:张仲海[1,2] 王多[1] 王太勇[1] 林锦州[1] 蒋永翔[1] 

机构地区:[1]天津大学机构理论与装备设计教育部重点实验室,天津300072 [2]航天晨光股份有限公司研究院,南京211100

出  处:《振动与冲击》2013年第19期125-130,152,共7页Journal of Vibration and Shock

基  金:国家自然科学基金(50975193);天津市科技计划项目(10ZXCXGX28700,11ZCKFGX03400);教育部2010年博士点基金(20100032110006);天津市应用基础及前沿技术研究计划(12JCQNJC02500)联合资助

摘  要:针对传统的自适应随机共振只能实现单参数优化和变步长随机共振计算步长选取困难的缺陷,提出一种基于粒子群优化算法(Particle Swarm Optimization,PSO)的自适应变步长随机共振方法,实现了变步长随机共振最优输出的自适应求解。该方法以双稳系统的输出信噪比作为粒子群算法的适应度函数,通过变步长随机共振系统的结构参数和计算步长的自适应同步选取,能够最优地检测出大参数条件下的微弱信号。仿真数据和工程实际数据的分析表明,该方法简单易行,适用范围广,收敛速度快,能有效的检测出强噪声背景下的高频微弱信号,具有良好的工程应用前景。The traditional adaptive stochastic resonance (SR) can only realize one-parameter optimization, and it is very difficult to select the computing step of step-changed stochastic resonance (SCSR). A new adaptive SCSR based on particle swarm optimization (PSO) was proposed here to realize the adaptive solving of optimal output of SCSR. The output signal to noise ratio of a bi-stable system was taken as a fitness function of PSO algorithm, the structural parameters and calculation step of SCSR were selected adaptively, as a result, the weak signal under conditions of large parameters was detected optimally. With the proposed method, simulation data and vibration signals measured on defective bearings with inner race fault were analyzed. The results showed that the proposed method has advantages of simplicity, fast convergence speed and widely applicable range, and possesses a good prospect of engineering application.

关 键 词:变步长随机共振 粒子群算法 自适应 多参数同步优化 

分 类 号:TH17[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象