检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广州中医药大学经管学院
出 处:《科学时代》2013年第23期-,共3页SCIENCE TIMES
摘 要:聚类分析是一种无监督的学习方法,是数据挖掘领域进行数据处理的重要分析工具和方法。K-均值聚类算法是一种典型的基于划分的方法,该方法的主要优点是,算法思想简单易行、快速而高效;但是该方法也存在其固有的缺陷:要求预先给定聚类个数;容易陷入局部极小值而得不到全局最优解等。针对以上问题,利用分类领域中的特征选择及特征加权方法,提出了一种改进的特征加权 K-均值聚类算法。实验结果证明,所提出的算法能产生质量较高的聚类结果。
分 类 号:TP3[自动化与计算机技术—计算机科学与技术] O15[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.182