弹性理论几类导数边界积分方程之间的变换关系  

Transformation Relations of the Several Derivative BoundaryIntegral Equations in Elasticity Problem

在线阅读下载全文

作  者:牛忠荣[1] 王秀喜[2] 王左辉[1] 

机构地区:[1]合肥工业大学,合肥230009 [2]中国科学技术大学,合肥230026

出  处:《应用力学学报》2004年第2期55-60,共6页Chinese Journal of Applied Mechanics

基  金:教育部留学人员回国基金和国家自然科学基金资助项目 ( 10 2 72 0 3 9)

摘  要:导数场边界积分方程通常难以应用 ,因为存在着超奇异主值积分的计算障碍。弹性理论中有几类不同的位移导数边界积分方程 ,本文采用算子δij和∈ij(排列张量 )作用于这些导数边界积分方程 ,做一系列变换 ,原有的超奇异积分被正则化为强奇异积分获解。从而建立了这些位移导数边界积分方程之间的转换关系 ,它们均可以归结为自然边界积分方程。自然边界积分方程仅存在容易计算的Cauchy主值积分。自然边界积分方程分析可直接获得边界应力和位移导数。The several different displacement derivative boundary integral equations (BIE) have been proposed in elasticity problem. Generally, there exists difficulty on the application of derivative BIE because of the puzzle of the evaluation of hypersingular integrals. In this paper, two operators and(permutation symbols) are used to act on the displacement derivative boundary integral equations, respectively. By the use of a series of derivation, the hypersingular integrals are reduced to the strongly singular integrals, which are easily calculated. As a result, it is interesting that all of the different displacement derivative BIE can be transformed to the natural BIE. In addition, the natural BIE only contains Cauchy principal value integrals. The natural BIE can be employed directly to obtain boundary stresses and displacement derivatives.

关 键 词:边界元法 弹性力学 位移导数边界积分方程 超奇异积分 正则化 位移导数 

分 类 号:O343.1[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象