Effects of Lizhong Tang on cultured mouse small intestine interstitial cells of Cajal  被引量:2

Effects of Lizhong Tang on cultured mouse small intestine interstitial cells of Cajal

在线阅读下载全文

作  者:Min Woo Hwang Jung Nam Kim Ho Jun Song Bora Lim Young Kyu Kwon Byung Joo Kim 

机构地区:[1]Department of Sasang Constitutional Medicine,College of Korean Medicine,Kyung-hee University [2]School of Korean Medicine,Pusan National University

出  处:《World Journal of Gastroenterology》2013年第14期2249-2255,共7页世界胃肠病学杂志(英文版)

基  金:Supported by The Traditonal Korean Medicine R and D Project,Ministry of Health and Welfare,South Korea,No.B120008

摘  要:AIM:To investigate the effects of Lizhong Tang,an herbal product used in traditional Chinese medicine,on mouse small intestine interstitial cells of Cajal(ICCs).METHODS:Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues.The ICCs were morphologically distinct from other cell types in culture and were identified using phase contrast microscopy after verification with anti c-kit antibody.A whole-cell patch-clamp configuration was used to record potentials(current clamp) from cultured ICCs.All of the experiments were performed at 30-32 ℃.RESULTS:ICCs generated pacemaker potentials,and Lizhong Tang produced membrane depolarization in current-clamp mode.The application of flufenamic acid(a nonselective cation channel blocker) abolished the generation of pacemaker potentials by Lizhong Tang.Pretreatment with thapsigargin(a Ca 2+-ATPase inhibi-tor in the endoplasmic reticulum) also abolished the generation of pacemaker potentials by Lizhong Tang.However,pacemaker potentials were completely abolished in the presence of an external Ca 2+-free solution,and under this condition,Lizhong Tang induced membrane depolarizations.Furthermore,When GDPβ-S(1 mmol/L) was in the pipette solution,Lizhong Tang still induced membrane depolarizations.In addition,membrane depolarizations were not inhibited by chelerythrine or calphostin C,which are protein kinase C inhibitors,but were inhibited by U-73122,an active phospholipase C inhibitors.CONCLUSION:These results suggest that Lizhong Tang might affect gastrointestinal motility by modulating pacemaker activity in interstitial cells of Cajal.AIM: To investigate the effects of Lizhong Tang, an herbal product used in traditional Chinese medicine, on mouse small intestine interstitial cells of Cajal (ICCs). METHODS: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. The ICCs were morphologically distinct from other cell types in culture and were identified using phase contrast microscopy after verification with anti c-kit antibody. A whole-cell patch-clamp configuration was used to record potentials (current clamp) from cultured ICCs. All of the experiments were performed at 30-32??°C. RESULTS: ICCs generated pacemaker potentials, and Lizhong Tang produced membrane depolarization in current-clamp mode. The application of flufenamic acid (a nonselective cation channel blocker) abolished the generation of pacemaker potentials by Lizhong Tang. Pretreatment with thapsigargin (a Ca2+-ATPase inhibitor in the endoplasmic reticulum) also abolished the generation of pacemaker potentials by Lizhong Tang. However, pacemaker potentials were completely abolished in the presence of an external Ca2+-free solution, and under this condition, Lizhong Tang induced membrane depolarizations. Furthermore, When GDP-β-S (1 mmol/L) was in the pipette solution, Lizhong Tang still induced membrane depolarizations. In addition, membrane depolarizations were not inhibited by chelerythrine or calphostin C, which are protein kinase C inhibitors, but were inhibited by U-73122, an active phospholipase C inhibitors. CONCLUSION: These results suggest that Lizhong Tang might affect gastrointestinal motility by modulating pacemaker activity in interstitial cells of Cajal.

关 键 词:INTERSTITIAL cells of CAJAL Lizhong TANG MOTILITY Gastrointestinal TRACT WHOLE-CELL patch clamp configuration 

分 类 号:R363[医药卫生—病理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象