Recent perspectives into biochemistry of decavanadate  被引量:2

Recent perspectives into biochemistry of decavanadate

在线阅读下载全文

作  者:Manuel Aureliano 

机构地区:[1]FCT,University of Algarve Gambelas 8005-139 Faro Portugal

出  处:《World Journal of Biological Chemistry》2011年第10期215-225,共11页世界生物化学杂志(英文版)(电子版)

基  金:Supported by Center for Marine Sciences funding

摘  要:The number of papers about decavanadate has doubled in the past decade. In the present review, new insights into decavanadate biochemistry, cell biology, and antidiabetic and antitumor activities are described. Decameric vanadate species (V10) clearly differs from monomeric vanadate (V1), and affects differently calcium pumps, and structure and function of myosin and actin. Only decavanadate inhibits calcium accumulation by calcium pump ATPase, and strongly inhibits actomyosin ATPase activity (IC50 = 1.4 μmol/L, V10), whereas no such ef- fects are detected with V1 up to 150 μmol/L; prevents actin polymerization (IC50 of 68 μmol/L, whereas no effects detected with up to 2 mmol/L V1); and interacts with actin in a way that induces cysteine oxidation and vanadate reduction to vanadyl. Moreover, in vivo decavanadate toxicity studies have revealed that acute exposure to polyoxovanadate induces different changes in antioxidant enzymes and oxidative stress parameters, in comparison with vanadate. In vitro studies have clearly demonstrated that mitochondrial oxygen consumption is strongly affected by decavanadate (IC50, 0.1 μmol/L); perhaps the most relevant biological effect. Finally, decavanadate (100 μmol/L) increases rat adipocyte glucose accumulation more potently than several vanadium complexes. Preliminary studies sug- gest that decavanadate does not have similar effects in human adipocytes. Although decavanadate can be a useful biochemical tool, further studies must be carried out before it can be conf irmed that decavanadate and its complexes can be used as anticancer or antidiabetic agents.The number of papers about decavanadate has doubled in the past decade. In the present review, new insights into decavanadate biochemistry, cell biology, and antidiabetic and antitumor activities are described. Decameric vanadate species (V10) clearly differs from monomeric vanadate (V1), and affects differently calcium pumps, and structure and function of myosin and actin. Only decavanadate inhibits calcium accumulation by calcium pump ATPase, and strongly inhibits actomyosin ATPase activity (IC50 = 1.4 μmol/L, V10), whereas no such effects are detected with V1 up to 150 μmol/L; prevents actin polymerization (IC50 of 68 μmol/L, whereas no effects detected with up to 2 mmol/L V1); and interacts with actin in a way that induces cysteine oxidation and vanadate reduction to vanadyl. Moreover, in vivo decavanadate toxicity studies have revealed that acute exposure to polyoxovanadate induces different changes in antioxidant enzymes and oxidative stress parameters, in comparison with vanadate. In vitro studies have clearly demonstrated that mitochondrial oxygen consumption is strongly affected by decavanadate (IC50, 0.1 μmol/L); perhaps the most relevant biological effect. Finally, decavanadate (100 μmol/L) increases rat adipocyte glucose accumulation more potently than several vanadium complexes. Preliminary studies suggest that decavanadate does not have similar effects in human adipocytes. Although decavanadate can be a useful biochemical tool, further studies must be carried out before it can be confirmed that decavanadate and its complexes can be used as anticancer or antidiabetic agents.

关 键 词:DECAVANADATE VANADATE Calcium pump MYOSIN ACTIN ACTIN polymerization Insulin mimetic ANTIDIABETIC AGENT Antitumor AGENT 

分 类 号:R341[医药卫生—基础医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象