检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张平定[1] 孙佳佳[2] 童创明[2,3] 季明阳 张鸣鸣[4]
机构地区:[1]西安外事学院,西安710077 [2]空军工程大学防空反导学院,西安710051 [3]毫米波国家重点实验室,南京210096 [4]中国人民解放军驻航宇救生装备有限公司军事代表室,襄阳441000
出 处:《微波学报》2015年第2期20-23,44,共5页Journal of Microwaves
基 金:国家自然科学基金(61372033);航空科学基金(20130196005)
摘 要:中段是弹道导弹防御的主要阶段,也是目标构成最为复杂的阶段。数量众多的轻、重诱饵和弹体碎片使得基于单一特征、单次观测的目标识别并不能给出令人信服的识别结果。因此本文根据弹道中段目标的微动和结构特性,首先利用BP神经网络得到基于单一特征的各待识别目标的基本概率赋值,然后利用D-S证据理论实现当前观测周期多特征的融合识别,最后利用D-S证据理论实现当前观测周期与以往观测周期在时间域的序贯融合识别。仿真结果证明了本文方法的有效性。Ballistic midcourse is the main stage for ballistic missile defense and it is also the stage that has the most complex targets. Many heavy,light decoys and body debris in midcourse make it hard to get convincing recognition result based on single feature or one measurement. Based on the micro-motion and structure features of midcourse target,Basic Probability Assignment Function( BPAF) of each single feature is got via BP neural network firstly. Then,multi-feature fusion at current moment is done with D-S evidence theory. Finally,recognition results from different moments are fused with D-S evidence theory again to get the final results. Simulation results show the effectiveness of this method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249