检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京农业大学,江苏南京210031 [2]工学院南京工业大学建筑学院,江苏南京211816
出 处:《自然灾害学报》2015年第2期8-14,共7页Journal of Natural Disasters
基 金:国家自然科学基金项目(51008160)
摘 要:应急避难场所的选址是应急规划的关键职能。当前的应急规划往往是依据现有的公园、绿地、广场等来选择应急避难场所,难以满足实际应急疏散的需要。目前不少学者在最大覆盖选址模型的基础上提出了应急设施选址问题的相关模型。将准备度指标引入最大覆盖应急设施选址问题,综合考虑需求量、与设施的距离和距离决定的权重,对每个社区的应急服务覆盖程度进行量化,从而保证将应急避难场所设置在合理的位置。为了求解该模型,构建了多智能体进化算法。案例研究表明,该算法可以高效地求解最大准备度覆盖模型。The emergency shelter location is the key function of emergency planning. Nowadays emergency planning often selects emergency shelter on the basis of existing park,green surface and square,and it is difficult to satisfy the need of actual emergency evacuation. At present,many scholars propose emergency shelter location model based on the maximal coverage problem. This paper introduces preparedness index into the problem about location of maximum coverage emergency facilities,considers comprehensively the demand,distance from the facilities and the weight determined by the distance,and quantizes emergenoy coverage degree of each community to guarantee that the emergency shelter is located in suitable position. To solve this model,this paper constructs a multi-agent evolutionary algorithm(MAEA). Results of case study prove that MAEA may solve the maximal preparedness coverage model with high efficiency.
关 键 词:应急避难场所 选址模型 准备度 多智能体 优化算法
分 类 号:TU984.116[建筑科学—城市规划与设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145