检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电波科学学报》2015年第2期300-306,共7页Chinese Journal of Radio Science
基 金:国家自然科学基金项目(61179025);湖北省教育厅重点项目(D20111201)
摘 要:将最小二乘支持向量回归技术应用到土壤湿度反演研究.利用微扰法数值模拟不同雷达参数下裸露土壤微波后向散射特性.经过数据敏感性分析,选取雷达频率为L波段(1.4GHz),双入射角(40°、50°),并设计多种反演方案,分别以单极化、双极化及同极化后向散射系数比值作为微波信号样本信息,经过适当的训练,利用最小二乘支持向量回归技术对土壤含水量进行了反演研究.结果表明:当采用多入射角、同极化后向散射系数比值作为微波信号样本信息时,反演结果具有较高的精度.同时,经过与人工神经网络结果比较,证明了该方法的有效性及抗噪声能力,为土壤湿度的实时反演研究提供了一种新方法.The least squares support vector machine(LS-SVM)techniques are applied to the inversion of soil moisture.The backscattering properties of bare soil under different radar parameters are numerically simulated by using small perturbation method(SPM).After data sensitivity analysis,with the L-band radar frequency(1.4GHz)and dual angle of incidence(40°/50°)selected,designed a variety of inversion scheme,herein the single polarization,dual polarization and co-polarization ratio of the backscattering coefficient are selected as the microwave signal sample information.Through appropriate training,the least squares support vector regression techniques are adopted to estimate soil moisture under different inversion schemes.The inversion results demonstrate high accuracy when multiple incident angles and the ratio of co-polarization backscattering coefficients are used as the microwave signal sample information.Comparison with the results of the artificial neural network(ANN)proved the validity and the anti-noise ability of the presented method,thus providing a new approach for the real-time retrieval of soil moisture.
分 类 号:S152.7[农业科学—土壤学] TP18[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7