检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国网温州供电公司,温州市325000 [2]国网长沙供电公司,长沙市410015
出 处:《自动化与仪器仪表》2016年第2期67-69,共3页Automation & Instrumentation
摘 要:针对目前高压隔离开关的发热温度检测没有可靠在线监测设备和技术手段,导致难以对过热缺陷进行可靠预警的问题。本文基于RBF神经网络,综合考虑了影响高压隔离开关发热的负荷电流率、污秽等级和环境温度3个因素,建立了一个隔离开关过热故障的预警模型,通过对现场数据样本测试发现:模型对发热状态评估的总体正确率达到了94.44%,且做到了对过热缺陷100%的预警。Currently,there is no reliable on-line monitoring technique or equipment to monitor the temperature of the high-voltage disconnecting switch,and so it is difficult to detect the overheat faults and send out early warning signals effectively and immediately.Hence,an assessment model was built based on radical basis function( RBF) neural network. The model takes three factors into consideration. The three factors are the ratio of load current and rated current,pollution grade and ambient temperature which impact the temperature of the high-voltage disconnecting switch. To prove the validity of the assessment model,some field samples were used to test the model. The test result showed that the overall accuracy rate reached 94. 44%,and it can detect the overheat defects with 100%.
分 类 号:TM564.1[电气工程—电器] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.199.33