检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学动力系,南京210096 [2]南京工程学院动力系,南京210013
出 处:《中国科学(E辑)》2004年第7期763-775,共13页Science in China(Series E)
基 金:国家自然科学基金资助项目(批准号: 50076008)
摘 要:静态神经网络由于自身的局限性难于对非线性时变过程进行建模和预测, 而最小资源分配网络(M-RAN)又因调节参数过多难于实现. 提出了一种新型的基于局部投影概念的RBF网络序贯学习算法: 局部投影网络LPN, 进而对算法进行了最小化改进. 在此基础上进行了详细的算例验证.
关 键 词:RBF网络 序贯学习算法 径向基函数 局部投影网络 最小资源分配网络 学习算法
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200