检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁克伟[1]
机构地区:[1]安徽建筑工业学院土木工程系,合肥230022
出 处:《安徽建筑工业学院学报(自然科学版)》2004年第2期1-5,共5页Journal of Anhui Institute of Architecture(Natural Science)
基 金:安徽省教育厅自然科学重点科研计划项目资助 ( 2 0 0 4kj0 90zd);安徽建筑工业学院博士后基金资助
摘 要:拟协调元出现 2 0多年了 ,已被承认和采用。本文从广义方程出发 ,主要陈述弱形式弹性力学基本方程是拟协调元的内在本质 ,揭示最小势能原理可由弱形式派生出来 ,指出用弱形式表达的平衡条件既有微分方程也有边界条件 ,可看成是变分的出发点 ,是更根本和原始的条件。因此变分解也是一种弱形式解 。The quasi-conforming element method was accepted and adopted when it appeared twenty years ago. This paper explains that the weak formulation of basic equation is the very nature of the quasi-conforming element method on the basis of generalized equation.It also proves that the minimum potential energy theorem can be derived by weak formulation. The weak equilibrium equation contains both differential equation and boundary condition. Those equations are the ultimate and original precondition on elasticity. It emphasizes that the solution of variational principle is that of weak formulation at the same time. It points out that the quasi-conforming element method is an inexorable tendency in developing the classical finite element method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117