R^(1+3)中球形非线性脉冲波的存在性分析  

Analysis on Existence of Spherical Nonlinear Pulses in R^(1+3)

在线阅读下载全文

作  者:袁明生[1] 王学峰[2] 唐红兵[2] 

机构地区:[1]上海交通大学应用数学系,上海200240 [2]石河子大学师范学院数学系,新疆石河子832003

出  处:《石河子大学学报(自然科学版)》2004年第4期360-363,共4页Journal of Shihezi University(Natural Science)

基  金:中国自然科学基金(1013050)

摘  要:讨论了非线性脉波动方程Λuε+F(|tuε|p-1tuε)=0,(t,x)∈[0,∞]×R3uεt=0 =εJ+1U0(r,r-r0ε),tuεt=0 =εJU1(r,r-r0ε)在1<p<∞的条件下所描述的球形脉冲波的局部和全局存在性问题,并对次临界(1<p≤2)和超临界(2<p≤∞)的情形都进行了讨论,为进行解的渐进分析做了必要的准备。We discuss local and giobal existence of spherical nonlinear pulses of wave equationΛu~ε+F(|_tu~ε|^(p-1)_tu~ε)=0(t,x)∈×R^3 u~ε_(t=0)=ε^(J+1)U_0(r,r-r_0ε),_tu~ε_(t=0)=ε^(J)U_1(r,r-r_0ε)with 1<p<∞ and F being uniformly Lipschitzean on R.Our discussion is in both subcritical case when 1<p≤2 and supercritical case when 2<p≤∞,which is prepared to make asymptotic analysis of solutions to the system mentioned above.

关 键 词:一致lip 非线性 球形对称 脉冲 紧支集 

分 类 号:O175.27[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象