检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学机械与动力工程学院,上海200030
出 处:《上海交通大学学报》2004年第9期1557-1561,共5页Journal of Shanghai Jiaotong University
摘 要:针对多变量连续空间学习问题的复杂性,给出了一种采用递阶模糊神经网络(HFNN)的强化学习方法,两个结构相同的HFNN分别同时完成模糊动作的合成以及值函数的逼近,网络参数通过梯度下降法在线调整.该方法有效地解决了在多变量环境下所遇到的规则组合爆炸问题,减少了运算量和存储量.HFNN前一阶的输出不再作为下一阶的前件,而直接用于其结论部分,克服了前一阶输出含义不明确或没有含义所带来的设计问题.通过仿真二级倒立摆验证表明,所给出方法是正确可行的.A reinforcement learning approach based on hierarchical fuzzy neural networks (HFNN) for solving complicated learning task in continuous multi-variable environment was proposed. Two HFNNs with the same structure perform fuzzy action composition and evaluation function approximation simultaneously. The parameters of neural networks are tuned and updated on line by gradient descent algorithm. The proposed method can successfully solve the problem of rules combination exploration and decrease the quantity of computation and memory requirement. The output of previous layer in the HFNN is no longer used as IF part of the next layer, but used only in THEN part. Thus it can deal with the difficulty when the output of previous layer is meaningless or its meaning is uncertain. The reinforcement learning method is proved to be correct and feasible by the simulation of double inverted pendulum balance problem.
关 键 词:模糊系统 递阶模糊神经网络 强化学习 二级倒立摆
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.186