预防接种情况下非线性饱和接触率SIR流行病模型动力学性态研究  被引量:4

The Study on Dynamic Behavior of SIR Epidemiological Model with Nonlinear Saturated Contact Rate Under Vaccination

在线阅读下载全文

作  者:徐文雄[1] 张仲华[1] 

机构地区:[1]西安交通大学理学院,西安710049

出  处:《工程数学学报》2004年第5期774-778,共5页Chinese Journal of Engineering Mathematics

摘  要:研究了一类预防接种情况下具有一般非线性饱和接触率SIR流行病模型动力学性态。得到决定疾病灭绝和持续生存的基本再生数。当基本再生数小于等于1时,仅存在无病平衡态;当基本再生数大于1时,除存在无病平衡态外,还存在惟一的地方病平衡态。利用Hurwitz判据、Liapunov-Lasalle不变集原理得到各个平衡态局部渐近稳定及无病平衡态全局渐近稳定的条件。特别地,当传染率为双线性时,无病平衡态及地方病平衡态全局渐近稳定。The dynamic behavior of a kind of SIR epidemiological model with general nonlinear saturated contact rate is considered under vaccination. The basic reproductive number is found which determines the existence of the infection. When it is equal to or smaller than 1, there only exists disease free equilibrium, otherwise, two equilibria,the endemic equilibrium and the disease free equilibrium exist. By Hurwitz criterion and Liapunov-Lasalleinvariant theorem, the locally asymptotical stability of disease free equilibrium and the endemic equilibrium is proved and the condition under which the disease free equilibrium is globally asymptotically stable is found. Specially, if the infective rate is bilinear,both of the equilibria are globally asymptotically stable.

关 键 词:预防接种 流行病动力学 数学模型 基本再生数 平衡态 稳定性 Hurwitz判据 不变集 

分 类 号:O175.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象