Role of precoating in artificial vessel endothelialization  被引量:1

Role of precoating in artificial vessel endothelialization

在线阅读下载全文

作  者:肖乐 时德 

机构地区:[1]Vascular Surgery Department, First Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400016, China

出  处:《Chinese Journal of Traumatology》2004年第5期312-316,共5页中华创伤杂志(英文版)

摘  要:As the progress of vascular surgery, artificial vessels have become the substitute for large and middle diameter vessels but have not for small diameter ones owing to thrombogenesis and occlusion within a short period of time after being applied. Artificial vessel endothelialization is one of the ideal methods to resolve such issue and has been improved continuously since Herring in 1978 put forward this term in the first time and utilized vascular endothelial cells (ECs) harvested from living animals to perform the test of artificial vessel endothelialization. However, human endothelial cells show little adhesion to the currently available vascular graft materials and some expanded polytetrafluoroethylene (ePTFE) grafts have shown only 10%+/-7% endothelial cell attachment rate (ECA, ie, attachment of ECs when incubated in vitro). Moreover, when the graft is exposed to pulsatile blood flow, a high proportion of cells are washed off from the lumen. Maximum cell loss occurs in the first 30-45 min after exposure to pulsatile flow, with up to 70% of cells lost. After that, a slower exponential loss occurs over the next 24 h. The lack of retention of cells could be partly overcome by sodding, but other techniques, involving engineering the lumen to improve ECA and endothelial cell retention rate (ECR, ie, retention of ECs when the grafts are exposed to pulsatile flow) have been developed. These include shear stress preconditioning, electrostatic charging and, above all, most successfully to date, precoating with EC specific adhesive glues that are mostly found in the extracellular basement membrane of blood vessels. The commonest are chemical coatings, preclotting, chemical bonding, and surface modifications.

关 键 词:Blood Vessel Prosthesis Coated Materials  Biocompatible Blood Vessel Prosthesis Implantation Cell Adhesion COLLAGEN Comparative Study Female FIBRONECTINS Humans LAMININ Male Materials Testing Prognosis Prosthesis Design Pulsatile Flow Risk Assessment Stress  Mechanical Treatment Outcome 

分 类 号:R654.3[医药卫生—外科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象