双周期圆截面纤维复合材料平面问题的解析法  被引量:6

AN ANALYTICAL METHOD FOR THE PLANE PROBLEM OF DOUBLY PERIODIC CIRCULAR CROSS-SECTION FIBER COMPOSITEMATERIALS^1

在线阅读下载全文

作  者:徐耀玲[1] 蒋持平[1] 

机构地区:[1]北京航空航天大学固体力学研究所,北京100083

出  处:《力学学报》2004年第5期596-603,共8页Chinese Journal of Theoretical and Applied Mechanics

基  金:国家自然科学基金资助项目(10272009)~~

摘  要:结合双准周期Riemann边值问题理论与Eshelby等效夹杂原理,为双周期圆截面纤维复合材料平面问题发展了一个实用有效的解析方法,获得了问题的全场级数解并与有限元结果进行了比较.该方法为非均匀材料的力学性质分析和复合材料等新材料的微结构设计提供了一个有效的计算工具,也可用来评估有限元等数值与近似方法的精度.Combining the theory of doubly periodic and doubly quasi-periodic Riemann boundary value problems and Eshelby's equivalent inclusion method, an analytical method for the plane problem of composite materials with a doubly periodic array of circular cross-section fibers is presented. The stresses expressions in series are obtained in the fibers and matrix and a comparison with the finite element calculations is done. The transverse tensile and shear moduli are predicted for a unidirectional fiber-reinforced composite with an doubly periodic array of circular fibers. It is found that for a composite with hard fibers and a soft matrix under a same fiber volume fraction, the effective moduli for a square array of fibers are larger than those for a hexagonal array of fibers. The present method provides an efficient tool for analyzing the mechanical properties of inhomogeneous materials and designing microstructures of composite materials, and can also be used to evaluate the precision of other numerical and approximate methods such as the finite element method.

关 键 词:双周期 平面问题 周期Riemann边值问题 圆截面 近似方法 非均匀材料 级数解 纤维复合材料 新材料 有限元 

分 类 号:O174.42[理学—数学] O175.8[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象