检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空学院,210016
出 处:《计算物理》1993年第2期185-190,共6页Chinese Journal of Computational Physics
摘 要:对微分求积法的关键问题-加权系数的确定进行了研究。在Lagrange插值逼近理论的基础上发展了计算各加权系数的方法,克服了原方法对网格节点选取有严格限制的局限性,使之更适用于流体力学问题的研究。该方法用于求解非定常边界层方程的结果表明,仅用较少的网格点就能得到足够精度的数值解。The key technique to differential quadrature method, i. e. the determination of the weighting coefficients, is investigated in this paper. The method of computing different weighting coefficients is developed on the basis of Lagrangian interpolating approximation. This method overcomes the limitation of rigorous restriction in choice of the coordinates of grid points in original method1 , and proves favoradble for studies of fluid mechanics problems. Resultes obtained for solving unsteady boundary layers show that the differential quadrature method can achieve rather high accurate solution by using only a few grid points.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145