检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:芮挺[1,2] 沈春林[1] 丁健[2] QiTIAN
机构地区:[1]南京航空航天大学自动化学院,南京210016 [2]解放军理工大学工程兵工程学院 [3]德克萨斯大学计算机科学系
出 处:《中国图象图形学报(A辑)》2004年第8期1008-1013,共6页Journal of Image and Graphics
摘 要:基于隐马尔可夫模型 (HMM)的手写字符识别方法是近年来的一个研究热点 ,针对 HMM编码稳定性和建模过程复杂的问题 ,提出了一种新方法 ,即采用统计不相关最佳鉴别变换对模式进行特征抽取和降维 ,获得最佳鉴别特征向量 ,并在此基础上对各最佳鉴别方向的投影结果进行编码 ,作为 HMM的观测值序列 ,由于统计不相关最佳鉴别变换保证了变换特征向量集类内散布最小 ,类间散布最大的条件 ,使 HMM编码的稳定性和模式的可分性得到明显改善 ,通过对美国国家邮政局Handwritten character recognition using the hidden Markov model (HMM) has been an active research topic for the past decade. One of the major problems, however, is that the handwritten characters may not exhibit consistent patterns due to different people's different writing styles. To enhance HMM's encoding stability and to reduce its modeling complexity, we propose a new approach in this paper. Specifically, we first obtain a set of uncorrelated optimal discriminant vectors by conducting feature extraction and dimension reduction using the uncorrelated Foley-Sammon transformation. Next, using a new feature space spanned by the optimal discriminant vectors, we obtain the projection coefficients of the raw data onto this new feature space. We then use these coefficients to form the observation sequence of the HMM. Because the uncorrelated Foley-Sammon transformation ensures minimum intra-class distance and maximum inter-class distance, it significantly improves HMM's encoding stability and difference classes' separability. In fact, the transformation allows different characters to be separable in many projection directions. To validate the accuracy and robustness of the proposed approach, we conduct experiments on the widely used US Postal Service (USPS) data set. Experiments show that the integration of the uncorrelated Foley-Sammon transformation and the HMM performs very well, achieving a recognition rate of 92%. It not only is better than regular HMM, but also is superior to the widely used nerual network based approaches.
关 键 词:模式识别 手写字符识别 最佳鉴别变换 编码 隐马尔可夫模型
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249