基于支持向量机的核磁共振左心室图像自动检测与分割  被引量:5

SVM Based Auto Detection and Segmentation of the Left Ventricle MRI Image

在线阅读下载全文

作  者:屈颖歌[1] 周涛[1] 王平安[2] 夏德深[1] 

机构地区:[1]南京理工大学计算机系,南京210094 [2]香港中文大学计算机科学与工程系

出  处:《武汉大学学报(理学版)》2003年第6期769-774,共6页Journal of Wuhan University:Natural Science Edition

基  金:香港特区政府研究资助局资助项目(CUHK/4180/01E)

摘  要:提出了用基于支持向量机的方法来实现核磁共振左心室图像的自动分割方法.首先用经过训练的支持向量机(SVM)在二维图像中进行识别和定位左心室目标区域并进一步找出边缘区域,采用一种改进的训练方法来提高SVM识别率,然后在足够准确的区域中利用梯度方法找出边缘点,并把他们连接起来,找出目标的边缘,达到分割的目的.实验表明,这种分割方法降低了SVM对背景图像的敏感度,提高了SVM识别率.A SVM based method is proposed aimed to perform the auto-segmentation of the left ventricle MRI image. The first and the most important step is to recognize and localize the target region that contains the left ventricle in the original two dimensional image with SVM. In this step an improved method is used to increase the recognize ratio. In the next step, a multi-localization thinking has been introduced to localize the edge areas, and a multi-level SVM is also introduced to improve the recognition ratio. Then within these exact regions, the gradient method is used to find the edge points and through connecting them to make out the margin of the target. The segmentation can also be preformed by other methods such as Level Set, and take the central region that can be auto formed through the recognized area in the first step as the initial contour. Experiment result proofs the advanced method, and the auto segmentation procedures do bring the following experiments lots of convenience.

关 键 词:支持向量机 核磁共振成像 图像识别 自动检测 图像分割 心脏 左心室 

分 类 号:R445.2[医药卫生—影像医学与核医学] TP391.41[医药卫生—诊断学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象