检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学自动化系,北京100084
出 处:《自动化学报》2004年第6期980-985,共6页Acta Automatica Sinica
基 金:国家高技术研究发展计划("863"计划)(2002AA412510;2002AA412420)资助~~
摘 要:如果将故障的发生视为一个离散事件,则存在故障可能的系统可以看作随机混合系统,那么故障诊断问题就可转化为混合系统的离散状态估计问题.文中试图从这个角度研究在非高斯噪声环境下非线性系统的故障诊断问题.在发生故障后的系统模型是已知的假定条件下,使用随机混合自动机对系统建模,并利用基于粒子滤波的混合估计算法估计出混合状态,从而完成故障诊断.仿真结果表明,所提的方法是可行的,可以处理某类故障诊断.If a fault's occurrence is thought of as a discrete event, the system suffered from faults could be regarded as a stochastic hybrid system. So fault diagnosis is transformed into the discrete states estimation problem for such a stochastic hybrid system. Fault diagnosis problem of nonlinear system in arbitrary noise environment is studied with this point of view. If assumed that models after faults' occurrence are known, the system subject to these faults can be modeled with a stochastic hybrid automaton. Then hybrid states in such a stochastic hybrid system are estimated by particle filtering-based algorithm. Consequently, fault diagnosis task is accomplished. The feasibility of proposed approach is shown by simulation results, and it is suitable in diagnosing some type faults.
关 键 词:故障诊断 混合系统 粒子滤波算法 随机混合自动机
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229