检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《仪器仪表用户》2004年第6期11-12,24,共3页Instrumentation
摘 要:赤潮是目前世界沿海国家面临的十分紧迫的海洋环境问题之一,也是一种全球性的海洋灾害。建立有效的赤潮灾害监测和预报系统已迫在眉睫。本文利用人工神经网络中的BP网络,建立赤潮生物密度与环境因子的人工神经网络的预报模型。以各种理化因子:水温、溶解氧、盐度、总氮、可溶性无机磷、浮游植物密度等为参数,试验人工神经网络的预报效果。针对BP网络训练易陷入局部最优的缺点.本文采用了遗传算法改进网络训练方法,保证网络达到全局最优。结果证明,采用人工神经网络进行赤潮预报是行之有效的。At present, red tide is one of very seriously environmental problems along the coastal nations of the world; it is also a global hazard of sea. It is an urgent need to establish an effectively detective and predictive system. This article introduces a predictive model of Artificial Neural Network of red tide biology density and environment factors by use of the back propagation (BP) network. Using physical and chemical parameters, such as temperature of water, Do, salinity, nitrogen, dissolubility abio-phosphorus, density of plankton, test the predictive effect of artificial neural network. Aim at the defect of the back propagation (BP) network ' s training which is easy to get into part of optimization, the article adopts genetic algorithms to improve on the training means of network, and it assures the network to all of optimization. The results show that Artificial Neural Network is an effective way to predict red tide.
关 键 词:人工神经网络 应用仿真 BP网络 全局最优 局部最优 网络训练 遗传算法 赤潮灾害 赤潮生物 溶解氧
分 类 号:TH761.1[机械工程—仪器科学与技术] X55[机械工程—精密仪器及机械]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222