检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周昊[1] 郑立刚[1] 樊建人[1] 岑可法[1]
机构地区:[1]浙江大学热能工程研究所能源清洁利用与环境工程教育部重点实验室,浙江杭州310027
出 处:《浙江大学学报(工学版)》2004年第11期1479-1482,共4页Journal of Zhejiang University:Engineering Science
基 金:国家自然科学基金资助项目(50206018).
摘 要:为了提高估算煤灰熔点的精度,采用广义回归神经网络(GRNN)对求解煤灰熔点问题进行了建模.将煤灰组分作为网络输入,煤灰软化温度作为网络输出,采用实验数据训练网络,训练完成的网络作为模型预测煤灰熔点.仿真结果表明,GRNN的预测值与实验值的最大相对误差为2.81%,而反向传播神经网络(BPNN)预测煤灰熔点的相对误差为3.62%.由于GRNN可应用于小样本问题的学习,GRNN比BPNN对煤灰熔点具有更好的预测和泛化能力.GRNN具有设计简单与收敛快的优点,并提高了实时处理与反映最新运行工况参数的预测能力.A general regression neural network (GRNN) was employed to model the coal ash fusion temperature for obtaining better predicting performance. The coal ash compositions were employed as the inputs of GRNN, and the measured ash fusion temperature were used as the outputs of the neural network. The modeling work employing the back-propagation neural network (BPNN) was also conducted to make a comparison with the GRNN. The results show that the maximum predicting error of GRNN was 2.81%, and that of BPNN was 3.62%. Compared to BPNN, the predicting result of GRNN is more accurate for the ash fusion temperature prediction. For GRNN has the learning ability in small training sample size, it can give better predicting and generalization performance under various conditions. The design of GRNN is simpler than that of BPNN, and the calculation time needed by GRNN for convergence is significantly shorter than that needed by BPNN.
分 类 号:TK222[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28