检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张丽平[1] 俞欢军[1] 陈德钊[1] 胡上序[1]
机构地区:[1]浙江大学化工系,杭州310027
出 处:《分析化学》2004年第12期1590-1594,共5页Chinese Journal of Analytical Chemistry
基 金:国家自然科学基金资助项目(No.20276063)
摘 要:神经网络模型能有效模拟非线性输入输出关系,但其常规训练算法为BP或其它梯度算法,导致训练时间较长且易陷入局部极小点。本实验探讨用粒子群优化算法训练神经网络,并应用到苯乙酰胺类农药的定量构效关系建模中,对未知化合物的活性进行预测来指导新药的设计和合成。仿真结果表明,粒子群优化算法训练的神经网络不仅收敛速度明显加快,而且其预报精度也得到了较大的提高。Neural networks (NNs) have become one of idea tools in modeling nonlinear relationship between inputs and desired outputs. However, the training of NNs by conventional back-propagation method, i.e. the BP-NNs, has intrinsic vulnerable weakness in slow convergence and local minima. In this work, particle swarm optimization (PSO) was proposed to train NNs, named PSO-NNs, to establish a quantitative structure-activity relationships model for herbicidal N-(1-methyl-l-phenylethyl) phenylacetamides, which provides a rational basis for understanding mechanisms of biological performance and how to alter chemical structure to achieve improved performance. Since neural networks can express complicated structure-activity relationships, and the combination of PSO Algorithms can help the networks to jump out from the local optimal points. The numerical results showed that PSO-NNs exhibit faster convergence rate and better predicting accuracy than the BP-NNs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80