检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《北京理工大学学报》2004年第11期1020-1023,1029,共5页Transactions of Beijing Institute of Technology
基 金:北京理工大学基础科学研究基金项目(200307A22)
摘 要:考虑拟一致矩形网格上Stokes方程组Hood-Taylor元的多参数渐近误差展开和分裂外推。在每个单元上用Bramble-Hilbert引理确定微分方程精确解与有限元插值之间积分式的主项。由连续性条件相邻两个单元上其主项的某些部分可以相互抵消,经求和后,得到整个求解区域上的主项。对该主项引入辅助问题并利用Stokes问题解的正则性理论给出精确解与有限元插值间的一个误差渐近展开式。有限元解经插值后处理和分裂外推后,与通常的误差估计相比,收敛速度提高了一阶。A multi-parameter asymptotic error expansion and extrapolation of the Hood-Taylor elements for the Stokes problem is considered on the piecewise uniform rectangular meshes. The main term of the error between the exact solution and the finite element interpolating function is determined by Bramble-Hilbert lemma on the individual finite element. A part of the main term of the error on two adjacent finite elements can be cancelled by continuity, and thus the main term on the whole domain is obtained by summation. By introducing an auxiliary problem, the asymptotic error expansion can be achieved by the regularity results of the Stokes problem. Compared with the general error estimate, the multi-parameter extrapolation based on such an expansion increases the rate of convergence by one order.
关 键 词:Stokes方程组 Hood-Taylor元 分裂外推 多参数渐近误差展开
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229