用于标定和优化的高压共轨柴油机建模  被引量:11

High pressure common rail diesel engine modeling for calibration and optimization

在线阅读下载全文

作  者:韩强[1] 杨福源[1] 张京永[1] 欧阳明高[1] 

机构地区:[1]清华大学汽车工程系汽车安全与节能国家重点实验室,北京100084

出  处:《清华大学学报(自然科学版)》2004年第11期1524-1527,1535,共5页Journal of Tsinghua University(Science and Technology)

基  金:国家"九七三"重点基础研究项目(2001CB209205)

摘  要:高压共轨柴油机可控燃油喷射参数的增加,在使对燃烧的控制更加灵活的同时也带来标定和优化工作量显著增加的问题。为适应高效率的需要,提出并研究了基于模型的标定优化,即采用神经网络在一些工况点上建立模型,再通过自适应神经模糊推理系统(ANFIS)进行插值,将模型由这些工况点扩展到所需工况空间。模型精度由对象、建模所用数据量及模型参数调整共同决定。试验在一台六缸高压共轨柴油机上进行。理论分析和试验结果表明:该方法可以在保证精度的同时有效减少标定优化的试验工作量。The large number of controllable fuel injection parameters in diesel engines equipped with high pressure common-rail fuel injection systems makes the combustion control more flexible, but also increases the calibration and optimization workloads. A higher efficiency, model-based calibration and optimization method was developed. Neural network was used to build subsidiary models at some separated operating condition points, and then adaptive network-based fussy inference system ANFIS was used to expand the model to a continuous engine operating range. The model accuracy depends on the modeling object, the amount of experimental data used to build the model and the model structure parameter setting. The experiment was carried out on a 6-cylinder high pressure common rail diesel engine. Analytical and experimental results show that the method can obviously reduce the workloads with an identical accuracy level compared with the conventional methods.

关 键 词:柴油机 高压共轨 预喷射 神经网络 自适应神经模糊推理系统(ANFIS) 

分 类 号:U464.172[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象