检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘建勋[1] 李应红[1] 陈永刚[1] 汪诚[1]
出 处:《航空动力学报》2004年第6期838-843,共6页Journal of Aerospace Power
摘 要:针对线性二次型调节器LQR在航空发动机多变量控制中存在的存储量需求太大的问题,提出了相应的自适应神经网络模糊控制方法。根据某型发动机飞行包线内给定工作点的线性化模型,分别设计控制器,并将分别设计的控制器用自适应神经网络模糊推理的方法进行综合,使之成为一个非线性的控制器,由此可以得出其它工作点的LQR设计结果。该方法能够在一定程度上弥补LQR控制的缺陷,仿真实例表明了其有效性。To solve the problem of Linear Quadratic Regulator (LQR) in aeroengine multivariable control,a modified LQR method based on a kind of fuzzy-neural networks was presented.First,we chose some representative operation points in the engine flight envelope,and designed the LQR controller for each operating point separately.Then,Adaptive-Network-based Fuzzy Inference System (ANFIS) was utilized to synthesize each linear controller to make a nonlinear controller.The inputs of ANFIS are flight altitude and Mach number,and the output is a feedback matrix,which represents the design results.The design of other operation points in the engine flight envelope can be conveniently deduced by the inference system.The ANFIS was trained offline,so we concluded that the method could compensate the short comings of the LQR control.Simulation results were given for a specific turbofan.The design process was analyzed,and the results prove the validity of the method.
关 键 词:航空、航天推进系统 航空发动机 LQR ANFIS 神经网络 模糊
分 类 号:V233.7[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28