检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学水资源与水电工程科学国家重点实验室,湖北武汉430072
出 处:《水科学进展》2004年第6期787-792,共6页Advances in Water Science
基 金:国家自然科学基金资助项目(50279035);国家高技术研究发展计划(863)资助项目;世界银行资助ANFAS项目~~
摘 要:在应用神经网络进行洪水预报时,因洪水系统随着河道上游来流、区间降雨、河床演变等因素的动态变化,其特性并不总是按照基本相同的规律变化,对这类系统的参数辨识,要求算法具有较强的实时跟踪能力,以适应模拟或预测洪水运动变化过程的要求。在BP神经网络模型的基础上,运用最小二乘递推算法,引入时变遗忘因子实时跟踪模型中时变参数的变化,建立了神经网络在非线性系统中动态系统输入、输出数据间的映射关系。计算实例表明:该法对参数的快速时变具有较快的跟踪能力和较高的辨识精度,是一种非常实用的水文实时预报方法。Flood system is usually very complex, and always changes with different inflow from upstream, local rainfall, river-bed deformation and other factors. When the back propagation (BP) neural network is applied in such system for flood forecasting, the algorithm must have ability for real-time tracing of the changes of parameters in the system. In this paper, a variable weighted forgetting factor based on recursive least-squares parameter estimation is introduced into the BP model to simulate such time-variant system. Each weight of the neural network can be real-time modified and the transitional invariable mapping relationship between input and output in the non-liner system of neural network is improved. And two examples are given to demonstrate the effectiveness of the improvement.The calculated result shows that the time-variable weights can be traced with a fast speed and agrees well with the measured data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.29