检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁波大学信息学院计算机科学技术研究所,浙江宁波315211
出 处:《计算机应用》2005年第1期110-113,共4页journal of Computer Applications
基 金:国家自然科学基金资助项目(60273094)
摘 要:视频图像分割是视频目标定位和识别的基础,如果背景中光线变化,那么将会给分割带来很大的影响。文中利用贝叶斯学习方法进行视频图像分割,在每个象素点处对不断变化的背景建模,计算每个象素点处的颜色直方图,用这些直方图来表示该象素点处特征向量的概率分布,然后用贝叶斯学习方法来判断,在光线缓慢或者突然变化的时候,每个象素点是属于前景还是属于背景。Segmentation is the first step towards the target location and recognition in video sequences. This task becomes difficult when the background illumination changes. A Bayesian learning method was applied into video segmentation. The constantly changing background was modeled at the pixel level. The histogram colors and co-occurrence vectors were calculated. The feature vector for each pixel was represented with a discrete probability distribution function. A Bayesian learning method was used to obtain these probability distribution functions from the video image inputs. Experiment results indicate that the proposed approach is able to learn a complex background of which the illumination changes gradually or suddenly.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188