检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]杭州电子科技大学自动化研究所,浙江杭州310018 [2]浙江大学生物医学工程及仪器学院,浙江杭州310027
出 处:《浙江大学学报(工学版)》2004年第12期1615-1618,1641,共5页Journal of Zhejiang University:Engineering Science
基 金:国家自然科学基金资助项目(60374047);浙江省自然科学基金重点资助项目(ZD0205).
摘 要:为了解决光照不均的非均匀图像分割问题,提出了基于面向对象思想的图像分割算法.针对非均匀图像的特点,以四叉树作为分析结构,在Shannon熵上推导出子集熵与全集熵的关系,作为图像的面向对象描述.基于此关系,充分考虑非均匀图像子集的局部灰度分布,最小化子集与全集的交叉熵,抹去子集的局部灰度偏移特征,从而得到分割阈值与局部灰度分布相关的分割方法.实验表明,相比常用的动态阈值算法,该算法具有运算量少、分割结果自适应性好的特点.For dealing with some inhomogeneous images, due to the factors of non-homogenous illumination, a novel segmentation based on object-oriented theory was provided. According to the features of the inhomogeneous images, the relationship between entropy of entire set and that of subsets was deduced based on the structure of quad-tree, which was analyzed as the object-oriented description. The shift distribution was removed through minimizing the cross-entropy between the subsets and entire set from the relationship, and a new entire set was reconstructed according to the removed subsets, which includes more particular information of the original image. The proposed thresholds were dependent on the local grayscale distribution of the subsets. Experiments show that the algorithm has the advantages of less computation and better segmentation than other usual algorithms of adaptive threshold surface.
关 键 词:信息处理技术 图像处理 阈值分割 图像四叉树 交叉熵 Kullback测度
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3