检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张绍伟[1]
机构地区:[1]北京大学数学系,100871
出 处:《数学进展》1993年第6期502-507,共6页Advances in Mathematics(China)
摘 要:本文旨在介绍Fermat最后定理的历史和Wiles最近所给的证明。首先简介了其在代数数论的发展过程中所起的作用,然后介绍椭圆曲线的基本概念,叙述Taniyama-Weil猜想,即任一椭圆曲线都是模的。进而介绍Ribet的工作,他证明了若Taniyama-Weil猜想对半稳定的椭圆曲线成立则Fermat最后定理成立。最后介绍l-adic Galois表示的概念及Wiles定理,即半稳定的椭圆曲线都是模的,从而这和Ribet的工作一起蕴含了Fermat最后定理。The aim of this paper is to sketch the history of Fermat last theorem and Wiles' proof for it. Firstly we describe its role in the devoloping of algebraic number theory. Secondly we introduce the basic concepts in the theory of elliptic curves. State the Taniyama-Weil conjecture, that is, every elliptic curve is modular. Thirdly we sketch Ribet's work, which says that Taniyama-Weil conjecture for semi-stable elliptic curves implies Fermat last theorem. Finally we give the definition of l-adic Galois representation and Wiles' theorem, which states that every semi-stable elliptic curve is modular, therefore together with Ribet's theorem it implies Fermat last theorem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117