检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张彼德[1] 欧健[2] 孙才新[3] 王柯柯[2] 潘凌[1]
机构地区:[1]西华大学电气信息学院,成都610039 [2]重庆工学院车辆工程学院,重庆400050 [3]重庆大学高电压与电工新技术教育部重点实验室,重庆400030
出 处:《重庆大学学报(自然科学版)》2005年第2期36-38,共3页Journal of Chongqing University
基 金:重庆市应用基础研究资助项目(7880)
摘 要:汽轮发电机组的振动故障具有多样性的特点,经常出现多种故障同时发生的情况。传统的BP神经网络方法可对单一故障有效诊断,若要对多故障进行诊断,则需对各种多故障样本进行学习,使输入空间在训练过程中被样本空间完全覆盖,将大大增加样本空间及学习训练负担,同时网络归纳、联想能力随之大幅度下降,诊断难以实施。因此,将自组织特征映射 (SOM)神经网络应用于汽轮发电机组的振动多故障诊断,用单一故障样本对网络进行训练,根据输出神经元在输出层的位置对多故障进行判断。经实例分析证明,该方法可对多故障进行有效诊断。The turbogenerator vibration faults have the character of variety. Many faults often occur synchronously. The traditional BP neural network can diagnose the single fault effectively. If we diagnose the multiple faults by using the BP neural network, we must train all samples of multiple faults, which is will increase the number of training samples and the burden of learning greatly. So the diagnosis can not be performed easily. This paper introduces a method based on SOM neural network, which is studied by using the single sample and diagnosing the multiple faults according to the position of output nerve cell. By analyzing the examples, the method is proved to be available for diagnosing the multiple faults of Turbogenerator set.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28