检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中农业大学理学院,湖北武汉430070 [2]吉林大学数学学院,吉林长春130012
出 处:《吉林大学学报(地球科学版)》2004年第B10期80-82,共3页Journal of Jilin University:Earth Science Edition
摘 要:径流预报是水资源系统优化调度的重要因素。探讨了神经网络及模糊模式识别的部分理论,在通常的神经网络预报模型及模糊模式识别预报模型的基础上提出了一种模糊模式识别神经网络预报模型及其相应算法,加强了系统的知识表达能力,使预报结果更为可信。通过实例计算,验证了模型的可行性以及所给算法对模型训练的有效性,从而为径流预报提供了一种新方法。Runoff forecast is an important part to use the water reasonably. By learning artificial neural network and fuzzy mathematic, this paper will give a fuzzy mould recognition artificial neural network forecast model and the algorithm. So, the result will be more believed. At last, by calculating a real example, the feasibility of the made model and the validity of the algorithm are verified. A new way worth of exploring for runoff forecast is provided.
分 类 号:P641[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.85