检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东大学数学与系统科学学院,济南250100
出 处:《系统科学与数学》2005年第1期118-128,共11页Journal of Systems Science and Mathematical Sciences
基 金:高等学校博士学科点专项科研基金资助课题.
摘 要:许多依赖时间的问题涉及到局部化现象,如突出的前沿位置、激波、边界层等, 其位置随时间而变动.多孔介质中两相不可压缩可混溶驱动问题是一典型的、有代表性 的"局部化现象"问题,其数学模型为耦合非线性偏微分方程组的初边值问题.为减轻数 值解在局部前沿位置的数值振荡,提高解的精确性,本文给出了该问题的动态混合元格 式和沿特征线修正的动态混合元格式,证明了其收敛性,并给出了误差估计.Many time-dependent problems involve localized phenomena, such as sharp fronts, shocks, and layers, which move with time. Miscible displacement problem in porous media is a typical, representative problem with localized phenomena, the models of which can be described as a coupled system of non-linear partial differential equations. To capture this moving local phenomena improve the numerical solution's precision, we present a dynamic mixed finite element we that with its modified form along the characteristic orve for incompressible miscible displacement in porous media, and discuss their convergence and error estimates.
关 键 词:不可压缩 非线性偏微分方程组 初边值问题 局部化 收敛性 误差估计 前沿 动态 变动 特征
分 类 号:O212[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229