检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军理工大学通信工程学院,江苏南京210007
出 处:《系统工程与电子技术》2005年第2期377-380,共4页Systems Engineering and Electronics
摘 要:采用自适应遗传算法与误差反向传播算法(BP)相结合,建立一个通过图像监测物体重量的模型。先对图像进行特征提取,然后用遗传算法进行全局训练,再用BP算法进行精确训练,使网络收敛速度加快并避免局部极小。作为实例,利用圆柱体、锥形体、梯形体等物体图像相关资料建立了数据库,将图像的特征因素作为样本对网络进行训练,并用训练好的网络预测未知物体重量。由实例表明,该方法在预测物体重量中是可行的,误差较小,为物体重量监测提供了一种新思路和新方法,可用于大型生产线上的物体重量在线监测和质量控制。The adaptive genetic algorithm (GA) and back-propagation (BP) neural network are applied to forecast object weight by image database. A weight forecasting model is established. First, some characters are obtained from the object pictures. Second, adaptive genetic algorithm is used for global training. Finally, BP algorithm is used for accurate training. With these steps, the network convergence speed is increased and local minimum is avoided. As an example, the database for the purpose of training the BP network is established based on the picture data of cylindrical, conical and trapezoic objects. The trained BP network is applied in weight forecasting. Experimental results demonstrate the forecasting model is effective and the error rate is low. It provides a new method and new thinking for forecasting object weight and is suitable for real-time monitoring and mass control of the large-scale production line.
关 键 词:自适应遗传算法 BP神经网络 预测物体重量 在线模型
分 类 号:TP31[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117